Enantio- and Diastereo-selective Reaction of But-2-enylstannane with Glyoxylate Esters and its Application to a Short Synthesis *of* **Verrucarinolactone**

Yoshinori Yamamato,* Norihiko Maeda, and Kazuhiro Maruyama

Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan

The erythro-3-alkyl-2-hydroxypropionate unit in (4) is predominantly obtained *via* the reaction of but-2-enylstannane **(2a)** with glyoxylate esters **(3)** while the *threo-isomer* (5) is preferentially produced *via* 9-but-2-enyl-9-borabicyclo[3.3.1] nonane **(2b);** the former reaction has been applied to the enantioselective synthesis of verrucarinolactone **(6).**

The diastereo- and enantio-selective synthesis of the 2-alkyl-3-hydroxypropionate unit in **(la)** has received wide attention and a number of excellent methods have been reported.' On the other hand, diastereo- and enantio-selective methods for synthesising the **3-alkyl-2-hydroxypropionate** unit in **(lb)** seem to be inadequate despite its frequent occurrence in many important natural products.² We report an allylic organometallic solution to this problem (equation 1) and its applica-

 $\overline{}$ Y **(1) a**; $X = OH$, $Y = Me$
b; $X = Me$, $Y = OH$

tion to the enantioselective synthesis of verrucarinolactone **(6).** The reaction of the but-2-enyl organometallic compounds **(2)** with the glyoxylate esters **(3)** was examined and the results are summarised in Table 1.

The eryfliro-isomer **(4)** was obtained predominantly *via* **(2a)** and the selectivity was enhanced with increasing steric bulk of the ester groups. In contrast, the rlireo-isomer *(5)* was produced preferentially *via* **(2b)** and again the selectivity was enhanced with increasing steric bulk. Although the *threo*selectivity was not high (3:1 at most), the erythro-selectivity exhibited with the Pr' group appeared to be suitable for further synthetic applications. We chose verrucarinolactone **(6),4** the left half of the macrocyclic portion of verrucarin **A,** as the target molecule.

It was thought that **(2a)** would attack the carbonyl group of the glyoxylate ester of 8-phenylmenthol **(7)5** from the *si-*

 $BBN = 9$ -borabicyclo[3.3.1] nonan-9-yl.

Table **1.** Reaction of but-2-enyl organometallic compounds (2) with **(3).a**

			Product ratio/ $\frac{9}{6}$ ^b	
(2)	(3) (R)	Solvent	(4) erythro	(5) threo
(2a)	Me	CH ₂ Cl ₂	75	25
	Bu¤	CH ₃ Cl ₂	80	20
	Pr ₁	CH ₃ Cl ₃	90	10
(2b)	Мe	Et.O	40	60
	Bun	Et ₂ O	30	70
	Pr _i	Et ₂ O	25	75

^aAll reactions were carried out on a **1** mmol scale as previously described.³ Total yields (isolated) were in the range 75—85%
for (2a) and 80—90% for (2b). **b** By g.l.c. (CW 6000, 5%, 2 m).

i, BF₃·OEt₂, CH₂Cl₂, -78 °C, 80%; ii, BH₃·SMe₂, hexane; NaOH-H₂O₂, 70%; iii, *p*-MeC₆H₄SO₃H, CH₂Cl₂, 30—35 °C, 24 h, 60%. R* - 8-phenylmenthyl.

face, since the phenyl group would block the attack from the re-face. Thus, it is clear that **(8a)** and **(8b)** result from attack at the si-face of *(7),* and **(8c)** and *(8d)* from attack at the reface of (7). The aldehyde proton of (7) appeared at δ 8.37 $(CCl₄, Me₄Si)$ owing to the shielding of the aromatic ring. The reaction of **(7)** with **(2a)** in the presence of one equivalent of BF_3 . OEt₂ afforded **(8a)** as a major product; **(8a)** : **(8b)** : **(8c)** $+$ **(8d)** $=$ 84:9:7. The ratio of these four diastereoisomers was determined by g.l.c. (DC 550, $10\frac{\%}{6}$, 3 m) and ¹H n.m.r. analysis? (CCI,, Me,Si); **@a),** *8* 0.72 (3H, d, *J* 6.9 Hz), 0.8-2.2 (18H, m), 2.47 (IH, d, *J* 5.4), 3.02 (H, dd, *J* 5.4 and 3.0), 4.80 (3H, m), 5.60 (lH, m), and 7.20 (5H, m); **(8b),** 0.8-2.2 (21H, m), 2.43 (IH, d, *J* 5.3), 2.98 (IH, dd, *J* 5.3 and 2.4), 4.78 (3H, m), 5.57 (lH, m), and 7.20 **(5H,** m); **(8c)** + **(8d),** not separable. Hydroboration-oxidation of the mixture of these isomers **(8)** gave the diol **(9)** in 70% yield, which in turn was treated with toluene-p-sulphonic acid. The usual work-up afforded white crystals, m.p. $93-94$ °C. **lH** N.m.r. spectroscopy showed a ratio of **(6)** to its epimer of 90:10; the methyl proton of **(6)** resonated at δ 1.21, while that of its epimer resonated at δ 1.02. Recrystallization from ether gave pure **(6)**, m.p. 101-102 °C, $[\alpha]_D^{21.5}$ -8.82° (10 cm cell, c 0.57, CHCl₃), 91 $\%$ enantiomeric excess. The similar reaction with **(2b)** gave **(8b)** as the major product, though the selectivity was low in comparison with the selectivity via **(2a);** $(8a):(8b):(8c) + (8d) = 30:52:18.1$ **The simple pro**cedure and high levels of enantio- and diastereo-selectivity attainable with **(2a)** may provide a practical method for the asymmetric synthesis of **(6).**

Received, *6th April 1983; Corn. 443*

References

- **S.** Masamune and W. Choy, *Aldrichim. Acta,* 1982, **15,** 47; D. **A.** Evans, *ibid.,* 1982, **15,** 23; C. H. Heathcock, *Science,* 1981, 214, 395; T. Mukaiyama, *Org. React.,* 1982, 28, 203; *Y.* Yamamoto and K. Maruyama, *Heterocycles,* 1982, **18,** 357; R. W. Hoffmann, *Angew. Chem., Int. Ed. Engl.,* 1982, 21, 555.
- T. Sato, **K.** Tajima, and T. Fujisawa, *Tetrahedron Lett.,* 1983, 729 and references cited therein.
- *Y.* Yamamoto, H. Yatagai, Y. Naruta, and **K.** Maruyama, *J. Am. Chem. SOC.,* 1980, 102, 7107; *Y.* Yamamoto, H. Yatagai, and **K.** Maruyama, *ibid.,* 1981, 103, 1969. The relative configurations of (4) and *(5)* were assigned through transformations into racemic verrucarinolactone and its epimer.
- For the recent synthesis of (6), see B. M. Trost and P. McDougal, *Tetrahedron Lett.,* 1982, 5497; W. R. Roush, T. **A.** Blizzard, and F. **Z.** Basha, *ibid.,* 1982, 2331; W. *C.* Still and H. Ohmizu, *J. Org. Chem.,* 1981, 46, 5242; **K.** Tomioka, F. Sato, and K. Koga, *Heterocycles,* 1982, **17,** 31 1 ; P. Mohr, M. Tori, P. Grossen, P. Herold, and C. Tamm, *Helv. Chim. Acta,* 1982, *65,* 1412.
- For asymmetric synthesis *via* this chiral auxiliary, see J. K. Whitesell, **A.** Bhattacharya, and **K.** Henke, *J. Chem. SOC., Chem. Commun.,* 1982, 988; 989; W. Oppolzer and H. J. Loher, *Helv. Chim. Acta,* 1981,64,2808; E. **J.** Corey and H. E. Ensley, *J. Am. Chem. SOC.,* 1975, **97,** 6908.

 \ddagger Here again, (8a) + (8b) were separated from (8c) + (8d), and converted into a mixture of verrucarinolactone (6) and its epimer.

t The absolute configurations of **(8a)** was determined from the known absolute configuration of $(-)$ -verrucarinolactone. **(8a)** $+$ **(8b)** could be separated from $(8c) + (8d)$ by silica gel column chromatography using hexane-ether (20 : 1) as eluant. The ratio of (8a) to (8b) was 9: 1. This mixture was converted into verrucarinolactone and the ratio of (6) to its epimer was 9: 1. Since the separation at the initial stage is not easy, recrystallization at the final stage is recommended for preparative purposes.